
NASA TN D-141 

TECHNICAL NOTE 
0-141 

E F F E C T  O F  LOCALIZED MASS TRANSFER NEAR THE STAGNATION 

REGION O F  BLUNT BODIES IN HYPERSONIC FLIGHT 

By Paul M. Chung 

A m e s  Research  Center  
Moffett Field, Calif. 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

WASHINGTON May 1960 
( b A 5 A - X B - E - I 4  1) E F k E C l  OF I C C A F I Z E D  8ASS B89-7 0574 
IZANSEBR &EA& TEE STACEATICN &EGICl l  OF BLUrJT 
€CII_IES IN HYPEEZCKIC P I I G B T  (hASA) 19 p 

Unc las  
00/02 0197159 



P 

ai  

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECHNICAL NOTE D - 1 4 1  

EFFECT OF LOCALIZED MASS TRANSFER NEAR THE STAGNATION 

REGION OF BLUNT BODIES IN W P E R S O N I C  FLIGHT 

By Paul M. Chug 

SUMMARY 

The e f f ec t  of localized mass t ransfer  on skin f r i c t i o n  and heat 
t r ans fe r  i s  studied ana ly t ica l ly  f o r  the impervious surfaces downstream 
of the transpiration-cooled region of hypersonic blunt bodies. 

Coefficient of l o c a l  skin f r i c t i o n  and Stanton number are  calculated 
near the  stagnation regions of a circular  cylinder and a sphere f o r  the 
case of localized mass t r ans fe r  at the stagnation region. 

The numerical r e su l t s  obtained and an ex is t ing  r e s u l t  f o r  a f l a t  
p la te  a re  cgmpared on the basis  of the Blasius dimensionless f l u i d  injec-  
t i o n  parameter. The comparison shows t h a t  the localized mass t r ans fe r  
becomes less  e f fec t ive  i n  protecting the downstream imprvious surfaces 
when a favorable pressure gradient is impsed on the flow and when the 
flow is varied from two- t o  three-dimensional. 

INTRODUCTION 

Mass t r ans fe r  cooling, whether it is  by ablat ion or inject ion of 
f l u i d  through a porous wall, is  l ike ly  t o  be applied i n  a localized region. 
The e f f ec t  of upstream t ranspi ra t ion  on the  downstream so l id  surface was 
studied f o r  a f l a t  p l a t e  i n  references 1 through 3. 

According t o  the authors of references 1 and 2, similar analyses 
when applied t o  the  stagnation region of blunt bodies have been msuc- 
cessful.  The major cause of t h i s  appears t o  be the e f f ec t  of pressure 
gradient i n  the stagnation region. It w a s  pointed out i n  reference 4 
t h a t  the usual i n t eg ra l  methods of solution of laminar boundary-layer 
equations f a i l  i n  many instances when the e f f ec t  of streamwise pressure 
gradient on the  veloci ty  prof i le  becomes pronounced. 

It was indicated i n  reference 5 ,  however, t h a t  under hypersocic 
f l i g h t  conditions, the  d i r ec t  e f fec t  of the  pressure gradient on the 
veloci ty  p ro f i l e  is very small when the surface of t he  vehicle is highly 
cooled. In the  present paper, the hypersonic approximations given i n  



reference 5 w i l l  be used t o  study the  e f f ec t  of localized mass t r ans fe r  
at the stagnation region of blunt bodies. 
p l a t e  solutions of reference 2 w i l l  be made i n  the  study. 

Direct application of the f l a t  

LIST OF SYMBOLS 

coeff ic ient  of 11 in polynomial ve loc i ty  p ro f i l e  
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coeff ic ient  of l o c a l  skin f r i c t i o n  f o r  f l a t  p l a t e  given in  re fer -  
ence 2 

PP 
P e  ,o Pe , o 
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independent var iable  defined by equation (6) 

absolute temperature 
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x component of ve loc i ty  
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y component of ve loc i ty  

distance along surface from stagnation point 

distance normal t o  surface 

ve loc i ty  gradient along surface at stagnation point,  

thickness of boundary layer  

modified boundary-layer thickness defined by equation (19) 
t 

E t  
Blasius var iable  defined by equation (31) 

subtended angle t o  x 

dynamic v iscos i ty  

kinematic v i scos i ty  

densi ty  

shear stress 

stream function defined by equations (8) and (9)  
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Subscripts 

C 
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i 
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st 
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cylinder 

edge of boundary layer  

i t h  species 

s t agnat ion point 

f l a t  plate 

s phe re 

surf ace 

point corresponding t o  t = €it 

Superscripts 

end of the  transpiration-cooled region 

t o t a l  d i f f e ren t i a t ion  with respect t o  vB 

ANALYSIS 

The study begins with t h e  following s e t  of equations f o r  the  laminar 
boundary layer  over two-dimensional o r  axisymmetric bodies (see f i g .  1). 
The hypersonic boundary layer  is  assumed t o  be i n  chemical equilibrium 
and the  Lewis number is  assumed t o  be unity.  'ken, 

apvrE + - = o  cont inui ty  ax ay 

p u - + p v - = -  au au a (.">+ p e % z  momentum ax & a ,  F 

Y 

b' 

E 

1 

d' 
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where 
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E = 0 f o r  two-dimensional bodies 

E = 1 f o r  axisymmetric bodies 

The diffusion equation i s  not necessary here because of t he  assumption 
of chemic a1 e qu i l ib r  iwn. 

The t o t a l  enthalpy, h t ,  includes the chemical energy and i s  given by  

where 

h i  = ST cp,idT + h io  
0 

The conservation equations can be transformed t o  more convenient 
forms by defining a new s e t  of independent var iables  s and t as 

The symbol Co i n  equation (6) represents the  r a t i o  

and i s  a function of both x and y.  A study of references 6 and 7 shows 
t h a t  f o r  a k w i s  number of 1 an approximate solut ion t o  the  conservation 
equations can be obtained t o  predict  the heat t r ans fe r  within 10 percent 
of t he  exact solut ion.  This i s  done by considering Pp/PelJe t o  be 
independent of y and t o  be equal t o  
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With this approximat ion : 

Now, a stream function is  defined by 

and 

which s a t i s f y  t h e  cont inui ty  equation. 
transformed on the  s-t plane as 

Then L e  momentum equation i s  

If we define 

then from equation (8) U = u/% and equation (10) becomes 

The l a s t  term of t he  above equation appeared i n  e s sen t i a l ly  t h i s  form i n  
the  a f f ine ly  transformed momentum equation i n  reference 5 where it w a s  
shown t h a t  t h e  e f f ec t  of t h i s  term on the  solut ion of t he  complete equa- 
t i o n  i s  very s m a l l  f o r  highly cooled hypersonic boundary layers.  
Accordingly equation (11) is  s implif ied t o  

The continuity equation becomes 



The energy equation (3)  i s  s imilar ly  transformed t o  

4 
The last  term i n  equation (14) i s  very small and can be neglected i n  

t o  
, accordance with reference 5 .  The energy equation therefore  is  simplified 

W '  
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Now it should be noted t h a t  the  resul t ing equations (12) ,  (13), and 
(15) are  i n  the  same form as the incompressible boundary- layer  equations 
applicable t o  flow over a f la t  p la te .  The, boundary conditions are: 

# 

J 

H = Hw << 1 

when t = M) 

when t 0 

u = o  
v = o  
v = vw 

Exact aff-ie solutions of equat-ms (12), (13), an (15) f o r  t he  
are avai lable  elsewhere ( e  .g. , 

Following the  method of reference 2, t he  in t eg ra l  method is 
The Prandt l  number is assumed t o  be 

transpiration-cooled regions 
ref  8).  
used here f o r  t he  region 
uni ty  i n  the  solut ion.  The momentum and energy equations and t h e i r  
boundary conditions are then ident ical .  Therefore, only the  solut ion of 
the  momentum equation i s  required. 
the  boundary layer  yields  

s 5 2 

s > $. 

Integration of equation (12) across 
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where 

and the modified momentum thickness i s  given by 
A 
4 
0 
9 

Before proceeding fw-ther the  v a l i d i t y  and accuracy of equation (17) which 
has been obtained by transforming, simplifying, and integrat ing the  o r ig ina l  
momentum equation (2)  w i l l  be discussed. 

Let us consider a hypersonic boundary layer  over a solid surface.  

b A coeff ic ient  of l o c a l  skin f r i c t i o n  can be obtained here from equa- 
t i o n  (17) using a four th  degree polynomial veloci ty  p ro f i l e  as ' 

The more exact integrated form of the  o r ig ina l  momentum equation ( 2 )  i s  
given i n  reference 4 as 

where the momentum thickness i s  defined by 

Equation (22) was solved i n  reference 4 by employing a four th  degree 
polynomial f o r  the ve loc i ty  p ro f i l e .  
the  analysis of reference 4 yields  exact ly  the  same value of 

3 

It can be shown t h a t  t h e  r e su l t  of 
Cf/2 as 

t h a t  given by equation (21)  when the  appropriate hypersonic approximations I& 
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of reference 5 are made. The solution, (21),  gives values of Cf within 
5 percent of those derived in  reference 5 when 
therefore  is seen t o  be qui te  sa t i s fac tory  and is a much more convenient 
form f o r  the  present purpose than equation (22). 

C = 1. Equation (17) 

L e t  us return t o  the present analysis. A seventh degree polynomial 
T~ is assumed f o r  the  veloci ty  prof i les  along the impervious surface in 

( s  > s )  as 
7 
m 

u = L a n v n  

The coeff ic ients  
(16) and from the compatibility conditions derived from equation (12). 
These conditions a re :  

an are obtained from the boundary conditions given i n  

when t = 0, '1 = 0 

u = v = o  

when t = fit, 11 = 1 

U = l  

Expressions (24) and (25) yield 

The momentum equation (17) gives 

I (25) 
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The above two equations become iden t i ca l  t o  equations (A29) and ( A 3 l ) ,  
respectively, of reference 2 when 
and ( A 3 l )  are replaced by 

6, k, C, vm, and x i n  equations (A29) 
8t ,  1, 1, and s ,  respect ively.  

The i n i t i a l  conditions f o r  equations (26) and (27) are o b t a h e d  by 
h 

matching the  polynomial p ro f i l e  at  s = s t o  the  Blasius ve loc i ty  p ro f i l e  
which is given by t h e  exact solut ions of equations (12) and (13) f o r  t he  
transpiration-cooled region. 

The momentum and cont inui ty  equations (12) and (13) may be transformed 
t o  the  Blasius equation over a f la t  p l a t e  as 

by l e t t i n g  

and 

The boundary conditions f o r  equation (28) are as follows f o r  t h e  
transpiration-cooled regions : 

f ' = O  

a t  qg = co 

f '  = 2 

A 
4 
0 
9 

The solution of equation (28) may be found i n  reference 8 f o r  various 
values of fw. The so lu t ion  is  the  same as t h e  one used f o r  the  
transpiration-cooled region of reference 2 except f o r  d i f f e ren t  def ini t ions 

* 

of independent var iab les .  Y 
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The prof i les  where the transpiration-cooled region meets the so l id  
region are  approximately matched, as i n  reference 2, by the following 
method. F i r s t ,  the  f r i c t i o n  coefficient determined by the polynomial 
prof i le  without t ranspi ra t ion  i s  matched t o  t h a t  given by the  Blasius 
prof i le  with t ranspirat ion.  
sions f o r  Cf/2 are derived and equated, there  r e su l t s  

In the  present analysis,  when the two expres- 

Equation (33) is ident ica l  in form t o  equation (A49) i n  reference 2 .  
Secondly, the def in i t ion  of boundary-layer thickness i n  the Blasius solu- 
t i o n  is taken as t h a t  value of 7~ at which 

A 

as i n  reference 2. Then equation (33) yields  a value of a1 at s = s 
which is iden t i ca l  t o  ( i n  the terminology of r e f .  2 )  the value of 
found f o r  x = x, i n  reference 2. It i s  now c l ea r  t h a t  the  solution of 
the present equations ( 2 6 )  and (27) can be obtained d i r ec t ly  from refer -  
ence 2. 
downstream of the transpiration-cooled region i s  then given by the simple 
relat ionship,  f o r  a given fw, 

a 

The l o c a l  skin f r i c t i o n  over the so l id  surface of a blunt body 

- 
where the  r a t i o ,  Cf(x)/cf(x)fw',, is  fo r  a f l a t  p la te  and is calculated 
i n  reference 2 f o r  several  values of fw. 
C f ( ~ ) / C f ( s ) f , ~ ,  can be transformed t o  the  physical plane as 

Cf (x)/Cf (x)fww by use of equation ( 6 ) .  

The sk in- f r ic t ion  r a t i o ,  

The convective heat transfer f o r  a Prandtl  number of 1 may be wri t ten 

This re la t ionship  should be val id  f o r  engineering purposes even when the  
Prandt l  number is  as low as 0.7. 
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DISCUSS I O N  

The rat ios ,  cf(x) /cf(x)fww and St(x)/St(x)fw,o, are  plot ted i n  
f igure  2 f o r  a f l a t  p la te ,  a c i r cu la r  cylinder (ax is  normal t o  flow), and 
a sphere f o r  two blowing rates. In the  calculat ions f o r  t he  cylinder and 
the  sphere, t h e  following simple relat ionships  were used f o r  s m a l l  

c 
8 

v 

%,e = Pcx 

r = x  

The solution f o r  a sphere depends on t h e  absolute value of as wel l  
as the  r a t i o  x/G. The r e s u l t  f o r  t he  sphere shown i n  f igure  2 i s  f o r  

$ 

e  ̂ = loo. 

A 
4 
0 
9 

The r e s u l t s  shown i n  the  f igure  are f o r  values of t he  dimensionless 
blowing parameter f, equal t o  -0.25 and -1. Equations ( 3 2 )  and (36) b 

y ie ld  the following relat ionships  between f, and the  ac tua l  blowing 
r a t e ,  pwvw. 

For a f l a t  p la te ,  

For a cylinder, 

For a sphere, 

r 

I 

f W ( 3 7 )  

Consider, as a bas is  of comparison, t he  conditions f o r  which 

Figure 2 shows t h a t  f o r  a given value of 
t he  body downstream of t he  transpiration-cooled region becomes l e s s  

f, the  protect ion afforded t o  



e f fec t ive  when a favorable pressure gradient i s  imposed on the  flow and 
when the  flow is  varied from two- t o  three-dimensional. The f igure  a l so  
shows t h a t  t he  protect ion from high heat- t ransfer  rate given t o  the  
impervious surf ace downstream of the  transpiration-cooled regions is very 
s m a l l  near t he  stagnation region of a hypersonic vehicle.  

#’ 

A 
4 
0 
9 

It may be in te res t ing  t o  note that the  problem of local ized mass 
t r a n s f e r  cooling of rocket nozzle w a l l s  can be handled by e s sen t i a l ly  
the  same method as given here. 
is very s m a l l  along the  w a l l s  of t he  nozzle s o  t h a t  t he  basic  s h p l i f i -  
cat ion of the  hypersonic boundary layer can be made i n  t h a t  case also.  

This i s  because the  densi ty  r a t i o ,  Pel&, 

The present study, s t r i c t l y  speaking, has been concerned with 
local ized a i r  in jec t ion  only. 
of a f l u i d  other  than air, however, the r e l a t i v e  r e s u l t s  between the th ree  
bodies ( f l a t  p la te ,  cylinder, and sphere) should s t i l l  be e s sen t i a l ly  the  
same as those presented here provided the t ransfer red  f l u i d  properties do 
not differ  g rea t ly  from those of air. 

In the case of a localized mass t r ans fe r  

CONCLUDING REMARXS 

The e f f ec t  of localized m a s s  t r ans fe r  on skin f r i c t i o n  and heat 
t r a n s f e r  w a s  analyzed f o r  t he  impervious surf.aces downstream of t h e  
transpiration-cooled region of hypersonic blunt bodies. 

Local coeff ic ients  of skin f r i c t i o n  and Stanton numbers were 
calculated near t he  stagnation regions of a c i r cu la r  cylinder and a 
sphere f o r  the  case of local ized mass t r ans fe r  a t  t he  stagnation region. 

The numerical r e su l t s  obtained here and the  f l a t  p la te  r e s u l t  of 
reference 2 were compared on the  basis of the  B l a s i u s  dimensionless f l u id  
in jec t ion  parameter. The comparisons showed t h a t  t h e  local ized mass 
t r ans fe r  becomes less e f fec t ive  in  protecting the  downstream impervious 
surfaces when a favorable pressure gradient is impse8  on the  flow and 
when t h e  flow is  varied fromtwo- t o  three-dimensional. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Calif., Feb. 19, 1960 
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Figure 1.- Physical model used i n  the sample calculat ion.  
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Figure 2.- Effect of localized mass transfer. 
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